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深度学习系统的回归性能提升
PART 01



Regression in Deep Learning Systems

It is important to detect regression faults!

DL System Ver1.0 DL System Ver2.0 DL System Ver3.0

New Requirements Fixing/Improvement

Accuracy:40% Accuracy:60%



Existing Works Have Limitations

SOTA techniques can not be directly adapt to solve this issue.

DL System Ver1.0
Accuracy=91%

DL System Ver2.0
Accuracy=91.5%

Code 
Change

Neuron 
Change

Regression Fuzzing in Traditional Software

DL Systems do not have explicit logical 
structures
Neuron change nearly affect all the neurons 
while code change only affect limited parts

Fuzzing for Deep Learning Models

Ignore the difference between different versions of 
the DL models

Overlook important properties of the testing, 
such as fidelity and diversity. 

Ø DeepHunter: Fuzzing guided by fine-grained neuron 
coverage in a specific version

Ø DiffChaser: Detect disagreements in Quantization by 
generating test cases toward decision boundary 

Ø locates code changes in software evolution and 
utilize them to guide the regression fuzzing

Ignores Difference:
Poor Fault-Triggering

Overlooks
Fidelity & Diversity

1 1

2 2



Our Idea of DRFuzz

Challenge 1: Fault-Triggering

Solution: Amplifying the 
prediction difference between 
versions through effective 
mutation to trigger more faults.

Challenge 3: Diversity

Solution: Using seed 
maintenance to generate test 
inputs  trigger different 
regression faults.

Challenge 2: Fidelity

Solution: Designing GAN-
based fidelity assurance 
method to ensure fidelity.



Our Approach: DRFuzz

GAN-based Fidelity Assurance

 * Guarantee fidelity of test inputs

② Seed Maintenance

 * Improve Diversity of test inputs  * Generate fault-triggering  test inputs

①                 Mutation

①   Mutation

Mutation Rule Selection

② GAN-based Fidelity Assurance

GAN Scoring & Filtering

Seed

Mutated Inputs

High-Fidelity Inputs

Mutation Rules

Seed Pool

Input Mutation

GAN-Discriminator

Input
ExecutionOriginal 

Model
Regression Model

Potential Test 
Input Evaluation

Regression 
Faults

Tree-based Trimming

Seed Probability Update

③  Seed Maintenance



Mutation
Mutation Rules: We design 16 mutation rules: 
Pixel-Level Mutation & Image-Level Mutation 

MCMC-guided Mutation Rule Selection :  Mutation rules 
that can generate test inputs with high fidelity and 
amplify the prediction difference towards becoming a 
regression fault, should be selected frequently.

Pixel-Level Mutation: 

Image-Level Mutation: 

Pixel Coloring Reverse Pixel Shuffling

Image Rotating Image Translation
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GAN-based Fidelity Assurance

Using DCGAN (GAN-based approach) preserve semantics to reducing discarding 
test inputs with high fidelity from image-level mutation rules.

train

Generator Discriminator
DiscriminatorSeed

Mutated Input

0.90

0.91

Training Phase: Predicting Phase:

Train Set

1 2



Seed Maintenance

Tree-based Trimming  The Trimming process aims to trigger more diverse faulty 
behaviors by removing redundant seed to adjust seed selection probability.



Subjects and Regression Scenarios

  Task Name Train Set Test Set Model

  Digit
  Recognition MNIST 60k 10k LeNet5

  Object
  Recognition Cifar-10 60k 10k VGG16

  Clothes
  Recognition FASHION-MNIST 60k 10k AlexNet

  Road Number
  Recognition SVHN 73,257 26,032 ResNet18

The subjects are diverse, involving different tasks/models/regression scenarios.

Supplementary 
Training

Adversarial 
Training

Model Fixing

Model Pruning



RQ1: Effectiveness

DRFuzz outperforms the compared approaches stably on all the regression 
scenarios in terms of various metrics. 

Effectiveness on Different Regression Scenarios

#RFI: Regression fault-triggering test inputs;
#RF: Dynamic diversity of test inputs; 
[Seed, Faulty Behavior]
#Seed: Static Diversity of test inputs; (Seed)
#GF: general faults detected on the regression model;



RQ2: Ablation

Approach #RFI #RF #Seed #GF

DRFuzz 70,093 16,464 6,942 231,675

DRFuzz-r (No MCMC) 53,037 14,309 6,523 185,354

DRFuzz-NG (No GAN) 83,042 21,044 7,748 279,544

DRFuzz-NSM (No Seed 
Maintenance)

36,936 7,109 3,239 136,723

Ablation Experiment Results

DRFuzz (left) vs DRFuzz-NG (right)

blurry              noisy        over-changed

The GAN-based Fidelity Assurance technique can filter out more than 20% of 
fault-triggering inputs with low fidelity



RQ3: Robustness Enhancement
Finetuning Accuracy on Different Regression Scenarios

Finetuning DL models with the test inputs generated by DRFuzz can fix 77.72%∼ 87.03% 
regression faults from DRFuzz and can defend 52.26%∼ 80.68%  attack from DiffChaser 
and 66.63%∼ 79.88%  attack from DeepHunter.



深度代码模型的鲁棒性能力提升
PART 02



Deep Code Models

DL have been widely used to process source code!

Code Generation

Clone Detection

Authorship Attribution Functionality Classification

Code Completion

…



Model Robustness is Critical

Testing Enhancement

Adversarial examples are important to test & enhance model robustness!

Deep Code Model

</>

Adversarial Examples

</> </> </>...

Prediction Results

...

Testing Report

</>

Adversarial Examples

</> </> </>...

</>

Training Set

</> </> </>...

</>

Augmented Set

</> </> </>...

Adversarial 
Training

1 2

The inputs (i.e., source code) for 
deep code models are discrete.

1

Source code has to strictly stick to 
complex grammar and semantics 
constraints.

2

Conclusion: the existing adversarial 
example generation techniques in 
other areas are hardly applicable to 
deep code model

Unique Characteristics of 
Adversarial Examples for Deep 
Code Models:



Deep Code Models are not 
Robust

Semantic-preserving adversarial examples can alter the prediction results!

Workflow of current techniques

Designing semantic-preserving 
code transformation rules.
Ø identifier renaming, etc.

Searching ingredients from the 
space for transforming an original 
input to a semantic-preserving 
adversarial example.
Ø Model prediction changes, etc. Adversarial Example 

Generated by ALERT
Adversarial Example 

Generated by CARROT

void main () {
char a[101] = {‘\0’};
gets(a);
// Some code...
}

void main () {
char argc[101] = {‘\0’};
gets(argc);
while(0);
// Some code...
}

+ while(0); a ⟹  argc



Limitations

SOTA techniques still suffer from effectiveness & efficiency Issues!

Almost 
Infinite

void f1(int a[], int n){
  int i; int j; int k;
  for (i = 0; i < n; i++) {
    for (j=0;j<((n-i)-1);j++){
      if (a[j] > a[j + 1]){
        k = a[j];
        a[j] = a[j + 1];
        a[j + 1] = k;
       }
     }
  }
}

1
2
3
4
5
6
7
8
9
10
11
12

Target Input

Ground-truth Label: sort
Prediction Results: sort (96.52%)

a

n

i

j

k

Identifiers

aa, array, at, area, au, am, alpha, ata, ad, 
auto, argc, ac, ar, ab ...

nu, sn, nc, len, cn, m, ns, pn, nb, nn, np, 
x, un, nan, fn, num, nt ...

it, chi, li, ui, ci, ia, ei, iii, oi, ini, ji, ai, phi, 
bi, gi, ie, ik ...

jump, js, jit, jc, jan, jp, ji, kj, bj, oj, adj, jl, 
aj, jj, je, ja ...

uk, ko, ku, kw, sk, key, ck, ak, mk, ky, tk, 
ks, kin, ke, km, rank ...

Ingredients

Complexity
nmThe Ingredient Space is Enormous1

2 Greedy model prediction 
changes guided search 
process is likely to fall into 
optimum.

3 Frequently invoking the 
target model could affect 
test efficiency via 
adversarial example 
generation.



Novel Perspective: Code-Difference-Guided Adversarial Example Generation

void f1(int a[], int n){
  int i; int j; int k;
  for (i=0; i<n; i++) {
    for (j=0; j<((n-i)-1); j++) {
      if (a[j]>a[j+1]){
        k = a[j];
        a[j] = a[j + 1];
        a[j + 1] = k;
       }
     }
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Ground-truth Label: sort
Prediction Results: sort (96.52%)

int f2(int t[], int len){
  int i; int j;
  i = 0; j = 0;
  while (len != 0) {
    t[i] = len % 10;
    len /= 10;
    i = i + 1;
  } 
  while (j < i){
    if (t[j] != t[(i - j) - 1]) return 0;
    j = j + 1;
  }
  return 1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Ground-truth Label: palindrome
Prediction Results: palindrome (99.98%)

void f3(int t[], int len){
  int i; int j; int k;
  i = 0;
  while (i < len) {
    j = 0;
    while (j < ((len - i) - 1)) {
      if (t[j] > t[j + 1]){
        k = t[j];
        t[j] = t[j + 1];
        t[j + 1] = k;
      } j = j + 1;
    } i = i + 1;
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Ground-truth Label: sort
Prediction Results: palindrome (90.88%)

Target Input Reference Input Adversarial Example

Have Different Semantics & Small Code Difference

Preserve the Semantics of f1 & Reduce Code Difference Brought by f2Complexity: nm → �2



Our Approach: CODA

Test

Enhance

</>

Target
Inputs

Reference
Inputs

Selection

Equivalent
Structure

Transformation

Identifier
Renaming

Transformation

</>

Adversarial
Examples

Target
Model

Training Set Augmanted Set

Overview of CODA

Structure Difference Identifier Difference



Reference Inputs Selection

</>

Target
Input

Code
Model

0.1

0.0

0.6

0.3

Softmax 
Confidence

Masked Code
Similarity

Top-N 
Reference Inputs

1st Class

2nd Class

Training
Data

</></></>

How to select reference inputs for reducing the ingredient space?

1 The prediction result is more likely to be changed from 1st Class to 2nd Class.

2 Smaller code difference can effectively limit the number of ingredients.



Equivalent Structure Transformation

How to reduce structure difference between target input and reference inputs?

1 applying equivalent structure transformations rule in a probabilistic way to reduce occurring 
distribution difference

2 considering all common kinds of code structures (i.e., loop, branch, and sequential).



Identifier Renaming Transformation

</>

Intermediate
Input

Identifier
Similarity

Iterative
Transformation

Reference
Identifiers

</>

Adversarial
Example

How to reduce identifier difference between target input and reference inputs?

1 Identifier renaming transformation refers to replacing the identifier in the target input with the 
identifier in reference inputs.

2 To ensure the naturalness, we consider the semantic similarity between identifiers and design an 
iterative transformation process.



Subjects
  Task Train/Validate/Test  Class Language Model Acc.

  Vulnerability
  Prediction 21,854/2,732/2,732 2 C

CodeBERT
GraphCodeBERT
CodeT5

63.76%
63.65%
63.83%

  Clone
  Detection 90,102/4,000/4,000 2 Java

CodeBERT
GraphCodeBERT
CodeT5

96.97%
97.36%
98.08%

  Authorship
  Attribution 528/–/132 66 Python

CodeBERT
GraphCodeBERT
CodeT5

90.35%
89.48%
92.30%

  Functionality
  Classification 41,581/–/10,395 104 C

CodeBERT
GraphCodeBERT
CodeT5

98.18%
98.66%
98.79%

  Defect
  Prediction  27,058/–/6,764 4 C/C++

CodeBERT
GraphCodeBERT
CodeT5

84.37%
83.98%
81.54%

The subjects are diverse, involving different tasks/models/classes/languages.

5 Tasks 3 Pre-trained 
Models

2~104 
Classes

4 Programming
Languages



RQ1: Effectiveness and Efficiency

CODA outperforms ALERT&CARROT in terms of the rate of revealed faults (RFR).

CODA performs less time and fewer model invocations than ALERT&CARROT.

Metric: 

Rate of Revealed 
Faults ↑

Model Invocations ↓
Metric: 



RQ2: Model Robustness Enhancement

CODA helps enhance the model robustness more effectively than ALERT&CARROT,
in terms of reducing faults revealed by the adversarial examples.

Evaluation Set 

Augmented 
Training Set

Metric:
Accuracy ↑



RQ3: Contribution of Main Components

We constructed three variants of CODA:

• w/o RIS (Referrence Inputs Selection)
• w/o EST (Equivalent Structure Transformation)
• w/o CDG (Code Difference Guidance in EST)
• w/o IRT (Identifier Renaming Transformation)

All the three components make contributions to the overall effectiveness of CODA.

Metric: 

Rate of Revealed Faults ↑



RQ4: Naturalness of Adversarial Examples

User Study (5-point Likert scale)

4 participates

</></></>

450 code snippets

The adversarial examples generated by CODA are natural 
closely to the naturalness-aware ALERT.



深度代码模型部署后性能即时提升
PART 03



Performance Issues with Deployed Deep Code Models

Deployed Model

</>

Correct
Prediction

</>

Erroneous
Prediction

Accuracy < 100% Challenges in enhancing deployed model performance

It’s crucial to improve the performance of deployed deep code models!

Existing strategies

Designing more advanced networks for retraining models1

Incorporating more data for fine-tuning models2

1

2

Limitations

Time-consuming caused by manual labeling & heavy computations

Largely inexplicable caused by complex parameters and datasets



Many Mispredictions are Caused by Noise in Inputs
Denoising in image processing field [1]

Denoising in speech recognition field [2]

LRCnet

Noisy 
Image

Denoised 
Image

Noisy 
Speech

Denoised 
Speech

AeGAN

Reason:
complex environment,
image quatization ...

Formate:
continuous pixel values

Reason:
background noise, 
difference speaker ...

Formate:
continuous signal values

Advantages of Input Denoising

Improving the model performance on-the-fly1

Retraining-free, efficiency boost2

1

2

Limitations for Denoising Code

Denoising in Continuous Space vs. Discrete Inputs

Complex syntactic & semantic constraints in Code

Enhancing explainable ability of technique for 
correcting mispredictions

3

[1] Ren J, Zhang Z, et al. “Robust low-rank convolution network for image denoising.” MM 2022.
[2] Abdulatif S, Armanious K, et al. “Aegan: Time-frequency speech denoising via generative adversarial networks.” EUSIPCO 2022.



Input Denoising for Deep Code Models

(1) Noisy Code (2) Denoised Code

Challenges

This motivates the potential of on-the-fly improving 
performance of (deployed) deep code models through 
identifier-level input denoising.

1

2

How to identify mispredicted inputs from 
the incomming code snippets?

How to localize noise (identifier-level) 
resulting in misprediction from a given 
code snippet?

3 How to cleanse noise to make the code 
snippet be predicted correctly?

Noisy identifiers: the identifier makes the largest 
contribution to the misprediction.



Overview of CodeDenoise

</>

Incoming
Code Snippet

Mispredicted Input
Identification

Noise
Localization

Noise
Cleansing

User

Deployed 
Model

CodeDenoise

The usage of CodeDenoise in practice:

We treat CodeDenoise as a post-processing module and intergrate it with the 
deployed code model as a system for making predictions in practice.



Mispredicted Input Identification

</>

Incoming
Code Snippet

Randomized
Smoothing

Perturbed 
Code Snippets

Mispredicted
or

Not?

</></></></>

C1 - How to identify mispredicted inputs from the incoming code snippets?

1 In the field of CV, randomized smoothing is widely used to certify the classification result of a given 
image by checking the results of randomly perturbed images in the neighborhood.

2 To design adapted randomized smoothing for deep code models, we should:
(1) define the perturbation strategy (2) and control the perturbation degree on input code.

Identifier
Renaming

Perturbation
Threshold

θ

Deep 
Code Model

Identification
Result



Noise Localization
C2 - How to localize noise resulting in misprediction from a given code snippet?

1 The attention mechanism is widely used to analyze the contribution of each element in the code(in 
particular, it is the core of the state-of-the-art Transformer architecture).

2 Insight: for mispredicted inputs, the identifiers with larger contributions to the misprediction are more 
likely to be noise in the code snippet.

</>

 Misclassified
Code Snippet

Deep
Code Model

Attention
 Mechanism

Code
Heatmap

Noisy
Identifiers

identifier_1: 0.33

identifier_2: 0.20

...

identifier_k: 0.09



Noise Cleansing
C3 - How to cleanse noise to make the code snippet be predicted correctly?

1 Exiting masked identifier prediction (MIP) models aim to predict the tokens at the masked 
locations, but they only consider the naturalness but not cleanliness.

2 To predict a clean identifier to replace the noisy identifier, CodeDenoise builds a masked clean 
identifier prediction (MCIP) model based on clean training data.

<mask>

 Masked
Mispredicted 
Code Snippet

Masked Clean
Identifier 
Prediction

Denoised
Code Snippet

</><mask>

Clean Training Data

Masked 
Clean

Identifie
r

Training Phase Inference Phase

Loss

Masked Clean
Identifier 
Prediction



Subjects
  Task Train/Validate/Test  Class Language Model  Acc.

Authorship
Attribution 528/–/132 66 Python

CodeBERT
GraphCodeBERT

CodeT5

83.58%
77.27%
83.33%

Defect
Prediction  27,058/–/6,764 4 C/C++

CodeBERT
GraphCodeBERT

CodeT5

85.47%
83.90%
82.29%

Functionality
Classification

C104
41,581/–/10,395 104 C

CodeBERT
GraphCodeBERT

CodeT5

97.87%
98.61%
98.60%

Functionality
Classification

C++1000
320,000/80,000/100,000 1000 C++

CodeBERT
GraphCodeBERT

CodeT5

85.00%
81.62%

86.49%
Functionality
Classification
Python800

153,600/38,400/48,000 800 Python
CodeBERT

GraphCodeBERT
CodeT5

93.91%
97.39%
97.62%

Functionality
Classification

Java250
48,000/11,909/15,000 250 Java

CodeBERT
GraphCodeBERT

CodeT5

96.30%
97.79%
97.48%

The subjects are diverse, involving different tasks/models/classes/languages.

6 Datasets 3 Pre-trained 
Models

4~1000 
Classes

4 Programming
Languages



RQ1: Effectiveness and Efficiency of CodeDenoise

CodeDenoise outperforms Fine-tuning with larger correction success rate 
and smaller mis-correction rate.

CodeDenoise outperforms Fine-tuning in terms of ovelall accuracy.

Metric: 

Correction Success Rate ↑
Mis-Correction Rate ↓

Overall Accuracy ↑
Metric: 



RQ2: Contribution of Each Main Component

Metrics CodeDenoise deepgini CodeDenoise randL CodeDenoise randC CodeDenoise MIP CodeDenoise

Correction Success Rate ↑  16.91%  14.65%  10.84%  15.50% 21.91%

Mis-correction Rate ↓ 0.52% 0.41% 0.52% 0.34% 0.09%

#Identifier Changes ↓ 2.25 3.79 3.27 2.27 1.58

We constructed four variants of CodeDenoise:

• CodeDenoise deepgini:  Randomized-smoothing-based strategy → DeepGini-based strategy
• CodeDenoise randR:  Attention-based strategy → Random strategy
• CodeDenoise randC:  MCIP-based strategy → Random strategy
• CodeDenoise MIP:  MCIP-based strategy → MIP-based strategy

All the three components make contributions to the overall effectiveness of CodeDenoise.



RQ3: Influence of Hyper-parameters

θ 1 2 3 4 5

Correction Success Rate ↑ 21.91% 22.85% 23.95% 25.27% 26.08%
Mis-correction Rate ↓  0.09%  0.14%  0.16%   0.20% 0.29%

Time (s) ↓ 0.48  0.63  1.03 1.43 1.70

N ×1 ×2 ×3 ×4 ×5

Correction Success Rate ↑ 21.91%  23.30%  24.66% 25.25% 25.99%
Mis-correction Rate ↓  0.09%   0.09%   0.08%   0.08%  0.08%

Time (s) ↓ 0.48  0.71  0.87 1.13  1.63

We studied the influence of two hyper-parameters in CodeDenoise:

• θ:  the threshold to limit the perturbation degree
• N:  the number of perturbed code snippets

We obtained default settings by balancing effectiveness and efficiency for practical use.
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