

AI驱动软件研发 全面进入数字化时代

中国·深圳 11.24-25

Al*
software
Development
Digital
summit

深度学习系统的性能提升

陈俊洁 天津大学

科技生态圈峰会+深度研习

——1000+技术团队的共同选择

0

0

(

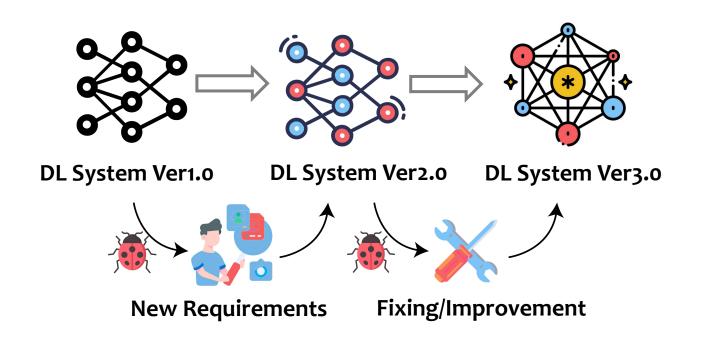
0

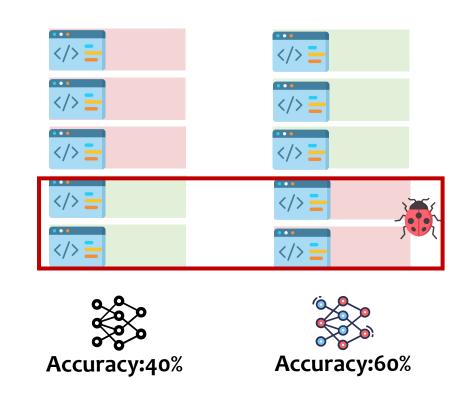
> 演讲嘉宾

陈俊洁

国家优青,天津大学特聘研究员,博导,软件工程团队负责人

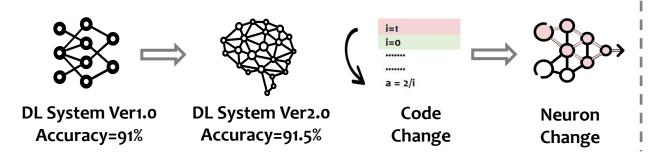
研究方向主要为基础软件测试、可信人工智能、数据驱动的软件工程等。 荣获中国科协青年托举人才、CCF优博、电子学会自然科学一等奖等奖项。 近年共发表学术论文70篇,其中CCF A类论文50余篇,获六项最佳论文 奖(包括五项CCF-A类会议ACM SIGSOFT Distinguished Paper Award, 以及一项CCF-B类会议ISSRE的Best Research Paper Award)。成果在 华为、百度等多家知名企业落地。担任CCF-A类会议ASE 2021评审过程 主席,Dagstuhl研讨会联合主席,以及软件工程领域全部CCF-A类会议 的程序委员会成员等。

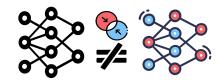


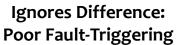

- 1. 深度学习系统的回归性能提升
- 2. 深度代码模型的鲁棒性能力提升
- 3. 深度代码模型部署后性能即时提升

PART 01 深度学习系统的回归性能提升

Regression in Deep Learning Systems




It is important to detect regression faults!


Existing Works Have Limitations

- Regression Fuzzing in Traditional Software
- ➤ locates code changes in software evolution and utilize them to guide the regression fuzzing
 - DL Systems do not have explicit logical structures
 - Neuron change nearly affect all the neurons while code change only affect limited parts

- Fuzzing for Deep Learning Models
- ➤ **DeepHunter:** Fuzzing guided by fine-grained neuron coverage **in a specific version**
- ➤ **DiffChaser:** Detect disagreements in Quantization by generating test cases toward decision boundary
 - Ignore the difference between different versions of the DL models
 - Overlook important properties of the testing, such as fidelity and diversity.

Overlooks Fidelity & Diversity

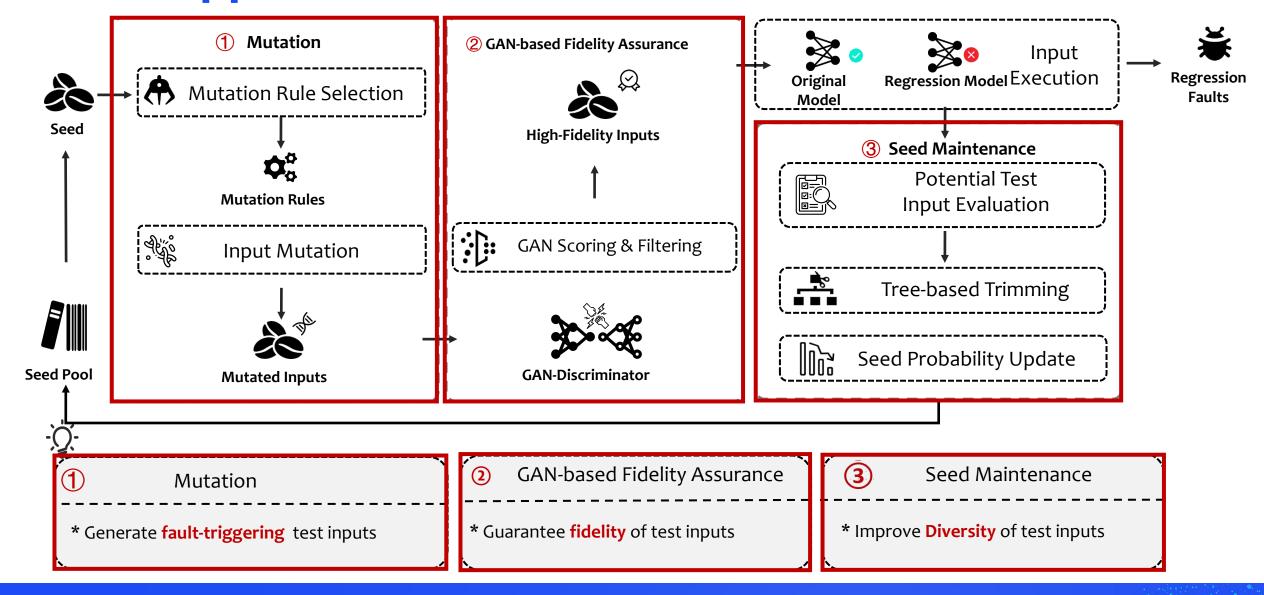
SOTA techniques can not be directly adapt to solve this issue.

▶ Our Idea of DRFuzz

Challenge 1: Fault-Triggering

Challenge 2: Fidelity

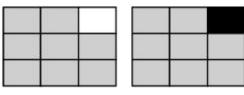
Challenge 3: Diversity

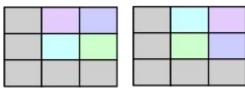


Solution: Amplifying the prediction difference between versions through effective mutation to trigger more faults.

Solution: Designing **GAN-based fidelity assurance** method to ensure fidelity.

Solution: Using **seed maintenance** to generate test inputs trigger different regression faults.


Our Approach: DRFuzz


Mutation

Mutation Rules: We design 16 mutation rules: Pixel-Level Mutation & Image-Level Mutation

1 Pixel-Level Mutation:

Pixel Coloring Reverse

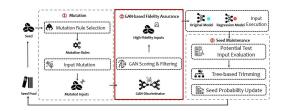
Pixel Shuffling

2 Image-Level Mutation:

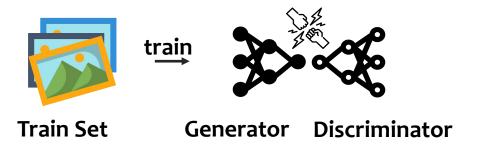
Image Rotating

Image Translation

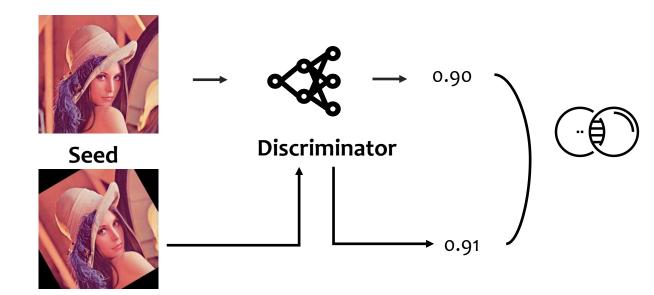
MCMC-guided Mutation Rule Selection: Mutation rules that can generate test inputs with high fidelity and amplify the prediction difference towards becoming a regression fault, should be selected frequently.


$$Reward = \frac{\#DiffTriggerInputs}{\#TotalSelect} \times \frac{\#FidelInputs}{\#TotalSelect}$$

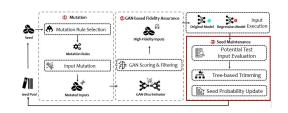
$$Regression Fault-triggering$$
Fidelity


$$< MR_1, MR_2, MR_3, \cdots, MR_n >$$

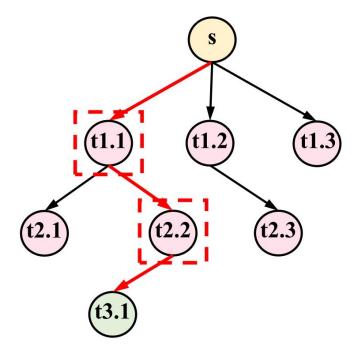
$$\nearrow P(MR_a|MR_b) = min(1, (1-p)^{k_a-k_b})$$


▶ GAN-based Fidelity Assurance

- Using DCGAN (GAN-based approach) preserve semantics to reducing discarding test inputs with high fidelity from image-level mutation rules.
- 1 Training Phase:

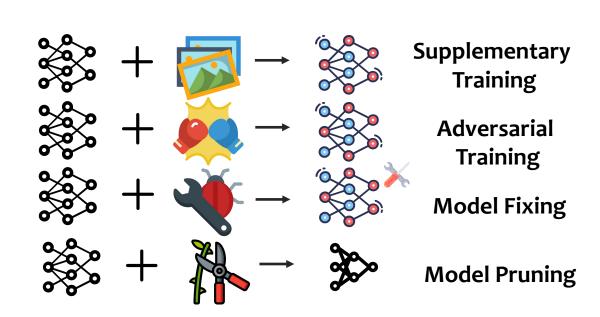


2 Predicting Phase:



Mutated Input

Seed Maintenance



► Tree-based Trimming The Trimming process aims to trigger more diverse faulty behaviors by removing redundant seed to adjust seed selection probability.

Subjects and Regression Scenarios

Task	Name	Train Set	Test Set	Model
Digit Recognition	MNIST	6ok	10k	LeNet5
Object Recognition	Cifar-10	6ok	10k	VGG16
Clothes Recognition	FASHION-MNIST	6ok	10k	AlexNet
Road Number Recognition	SVHN	73,257	26,032	ResNet18

The subjects are diverse, involving different tasks/models/regression scenarios.

RQ1: Effectiveness

Effectiveness on Different Regression Scenarios

Regression Scenario	Approach	#RFI	#RF	#Seed	#GF
SUPPLY	DiffChaser	12,489	991	846	18,529 26,854
SOFFLI	DiffChaser 12,489 991 846 1832 1402 1402 1832 1402 1832 1402 1832 1402 1832 1402 1832 1402 1832 1402 1832 1402 1832 1402 1832 183391 1832	207,917			
ADV	- CO. C.	0100000000	5 1 1 1 1 1 1 1 1 1 1	The second	15,366 25,290
Market Co.	171.7	45,620	13,545	6,198	252,035
FIXING	100 TO 10	100 100 100 100 100 100 100 100 100 100	2.00	5 - 5 To A Control 10	20,036 19,202
	DRFuzz	76,555	19,359	7,267	228,039
PRUNE		127272			67,656 30,200
	DRFuzz	86,040	18,975	7,690	185,464

#RFI: Regression fault-triggering test inputs;

#RF: Dynamic diversity of test inputs;

[Seed, Faulty Behavior]

#Seed: Static Diversity of test inputs; (Seed)

#GF: general faults detected on the regression model;

DRFuzz outperforms the compared approaches stably on all the regression scenarios in terms of various metrics.

▶ RQ2: Ablation

Ablation Experiment Results

Approach	#RFI	#RF	#Seed	#GF
DRFuzz	70,093	16,464	6,942	231,675
DRFuzz-r (No MCMC)	53,037	14,309	6,523	185,354
DRFuzz-NG (No GAN)	83,042	21,044	7,748	279,544
DRFuzz-NSM (No Seed Maintenance)	36,936	7,109	3,239	136,723

blurry

noisy

over-changed

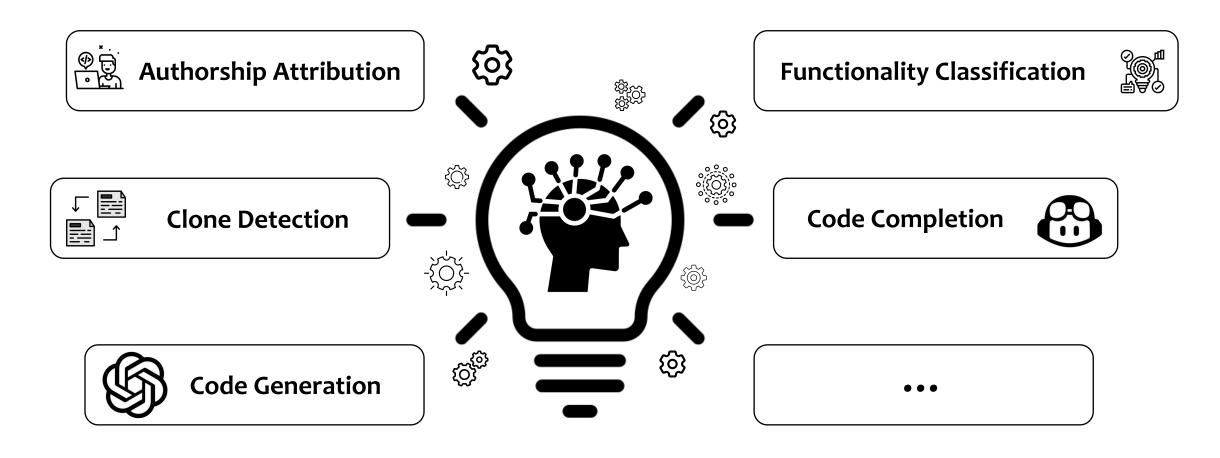
DRFuzz (left) vs DRFuzz-NG (right)

The GAN-based Fidelity Assurance technique can filter out more than 20% of fault-triggering inputs with low fidelity

RQ3: Robustness Enhancement

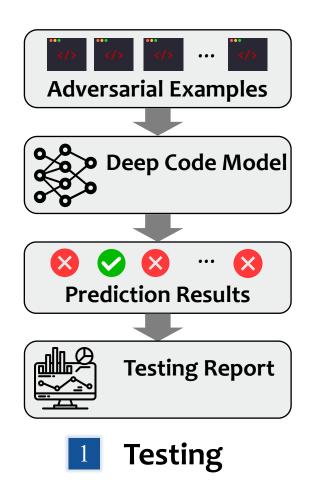
Finetuning Accuracy on Different Regression Scenarios

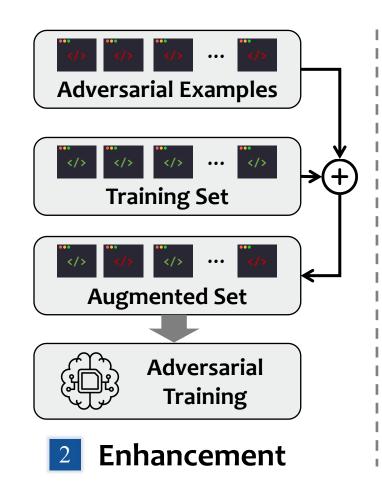
Scenario	Train\Test	DiffChaser	DeepHunter	DRFuzz	↑Acc(%
Ų.	DiffChaser	67.11%	49.62%	53.35%	-0.97%
SUPPLY	DeepHunter	61.97%	72.83%	60.13%	-0.06%
15 S	DRFuzz	73.25%	74.09%	84.98%	0.34%
- 12	DiffChaser	72.96%	60.39%	58.84%	0.39%
ADV:CW	DeepHunter	71.84%	75.25%	64.12%	0.66%
	DRFuzz	80.68%	79.88%	87.03%	0.81%
- 2	DiffChaser	77.47%	50.39%	55.70%	-0.25%
ADV:BIM	DeepHunter	64.13%	68.43%	58.50%	0.04%
	DRFuzz	76.87%	67.64%	83.23%	-0.04%
111	DiffChaser	64.25%	50.70%	48.52%	-2.30%
FIXING	DeepHunter	55.13%	65.02%	53.99%	-1.38%
Light of the County of the Cou	DRFuzz	52.26%	66.63%	77.72%	-0.12%
	DiffChaser	75.61%	55.55%	53.46%	3.66%
PRUNE	DeepHunter	63.84%	76.10%	59.74%	3.95%
-apper destablishment et	DRFuzz	74.35%	70.37%	81.53%	4.04%



Finetuning DL models with the test inputs generated by DRFuzz can fix 77.72% 87.03% regression faults from DRFuzz and can defend 52.26% 80.68% attack from DiffChaser and 66.63% 79.88% attack from DeepHunter.

PART 02 深度代码模型的鲁棒性能力提升。


Deep Code Models

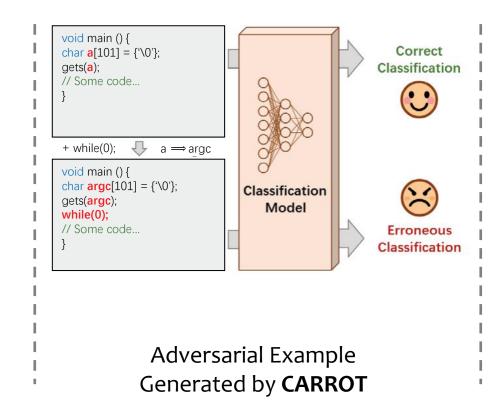


DL have been widely used to process source code!

Model Robustness is Critical

- Unique Characteristics of Adversarial Examples for Deep Code Models:
 - The inputs (i.e., source code) for deep code models are discrete.
 - Source code has to strictly stick to complex grammar and semantics constraints.

Conclusion: the existing adversarial example generation techniques in other areas are hardly applicable to deep code model



Adversarial examples are important to test & enhance model robustness!

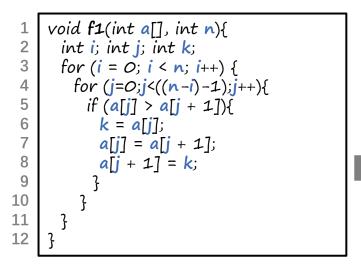
Workflow of current techniques

- Designing semantic-preserving code transformation rules.
 - > identifier renaming, etc.
- Searching ingredients from the space for transforming an original input to a semantic-preserving adversarial example.
 - Model prediction changes, etc.


```
static int buffer_empty(Buffer *buffer)
{
    return buffer->offset == 0;
}

(a) An original code snippet that can be correctly classified by a model fine-tuned on CodeBERT.
```

```
static int buffer_empty(Buffer *queue)
{
    return queue->offset == 0;
}
(c) ALERT generates an adversarial example by replacing the variable buffer to queue.
```


Adversarial Example Generated by **ALERT**

Semantic-preserving adversarial examples can alter the prediction results!

Limitations

1 The Ingredient Space is Enormous

Prediction Results: sort (96.52%)

Target Input

Ground-truth Label: sort

Identifiers

k

n

ntifiers Ingredients

aa, array, at, area, au, am, alpha, ata, ad, auto, argc, ac, ar, ab ...

nu, sn, nc, len, cn, m, ns, pn, nb, nn, np, x, un, nan, fn, num, nt ...

it, chi, li, ui, ci, ia, ei, iii, oi, ini, ji, ai, phi, bi, gi, ie, ik ...

jump, js, jit, jc, jan, jp, ji, kj, bj, oj, adj, jl, aj, jj, je, ja ...

uk, ko, ku, kw, sk, key, ck, ak, mk, ky, tk, ks, kin, ke, km, rank ... 2 Greedy model prediction changes guided search process is likely to fall into optimum.

3 Frequently invoking the target model could affect test efficiency via adversarial example generation.

SOTA techniques still suffer from effectiveness & efficiency Issues!

Novel Perspective: Code-Difference-Guided Adversarial Example Generation

Target Input

Reference Input | <

Adversarial Example


```
void f1(int a[], int n){
int i; int j; int k;

for (i=0; i<n; i++) {
  for (j=0; j<((n-i)-1); j++) {
    if (a[j]>a[j+1]){
        k = a[j];
        a[j] = a[j + 1];
        a[j + 1] = k;
    }
}

}

}
}
}
```

```
int f2(int t[], int len){
int i; int j;
i = 0; j = 0;
while (len != 0) {
    t[i] = len % 10;
    len /= 10;
    i = i + 1;
}

while (j < i){
    if (t[j] != t[(i - j) - 1]) return 0;
    j = j + 1;
}
return 1;
}</pre>
```

```
void f3(int t[], int len){
int i; int j; int k;

i = 0;

while (i < len) {
    j = 0;

while (j < ((len - i) - 1)) {
    if (t[j] > t[j + 1]){
        k = t[j];
        t[j] = t[j + 1];

    t[j + 1] = k;
    } j = j + 1;
}
i = i + 1;
}
```

Ground-truth Label: sort

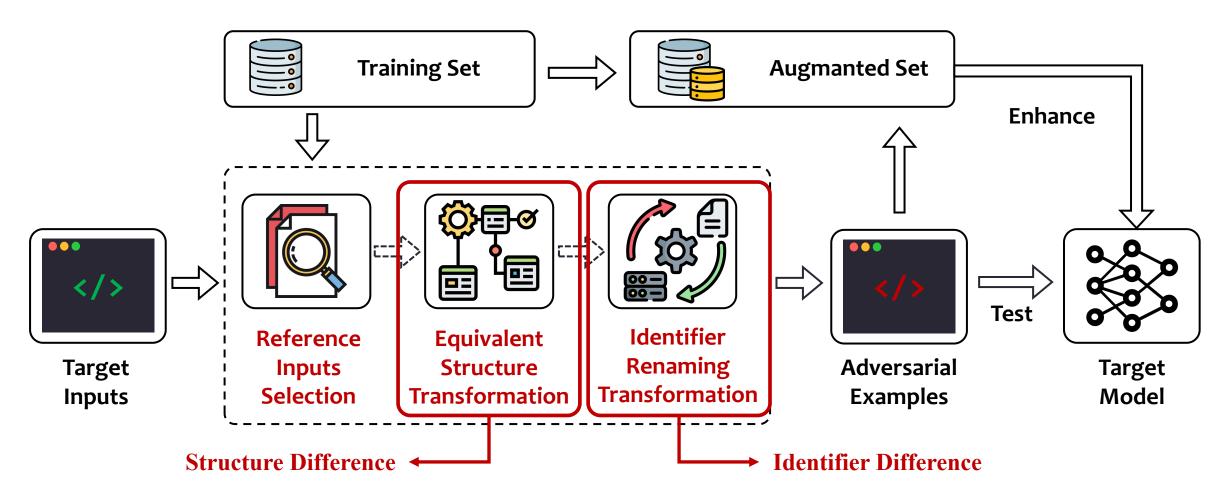
Prediction Results: sort (96.52%)

Ground-truth Label: palindrome

Prediction Results: palindrome (99.98%)

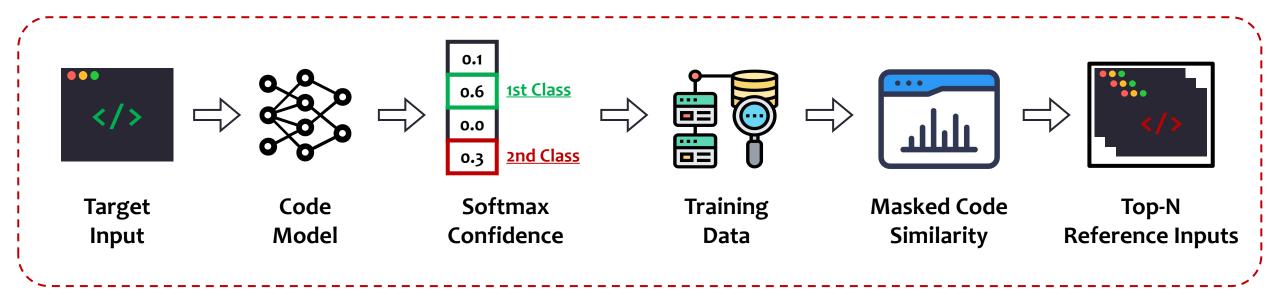
Ground-truth Label: sort

Prediction Results: palindrome (90.88%)


Have Different Semantics & Small Code Difference

Complexity: $n^m \rightarrow m^2$

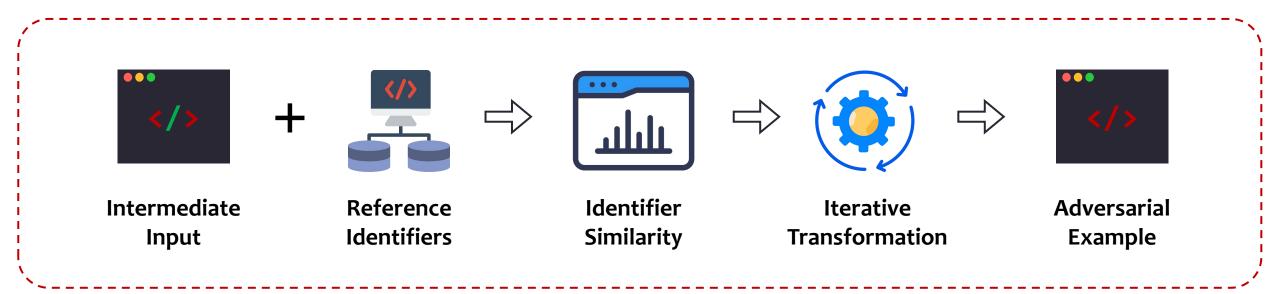
Preserve the Semantics of f1 & Reduce Code Difference Brought by f2


Our Approach: CODA

Overview of CODA

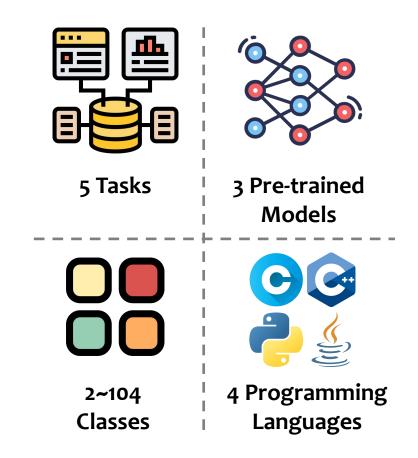
Reference Inputs Selection

- How to select reference inputs for reducing the ingredient space?
 - 1 The prediction result is more likely to be changed from 1st Class to 2nd Class.
 - 2 Smaller code difference can effectively limit the number of ingredients.


▶ Equivalent Structure Transformation

- How to reduce structure difference between target input and reference inputs?
 - applying equivalent structure transformations rule in a probabilistic way to reduce occurring distribution difference
 - 2 considering all common kinds of code structures (i.e., loop, branch, and sequential).

Transformation	Description	Example Before Transformation	Example After Transformation
R_1 -loop	equivalent transformation among for structure and while structure	for (i=0; i<9; i++) { Body; }	i=0; while (i<9) { Body; i++; }
R_2 -branch	equivalent transformation between if-else(-if) structure and if-if structure	<pre>if (A) { BodyA; } else if (B) { BodyB; }</pre>	if (A) { BodyA; } if (!A && B) { BodyB; }
R_3 -calculation	equivalent numerical calculation transformation, e.g., ++,, +=, -=, *=, /=, %=, <<=, >>=, &=, =, ^=	i += 1;	i = i + 1;
R_4 -constant	equivalent transformation between a constant and a variable assigned by the same constant	<pre>println("Hello, World!");</pre>	<pre>String i = "Hello, World!"; println(i);</pre>


▶ Identifier Renaming Transformation

- How to reduce identifier difference between target input and reference inputs?
 - 1 Identifier renaming transformation refers to replacing the identifier in the target input with the identifier in reference inputs.
 - To ensure the naturalness, we consider the semantic similarity between identifiers and design an iterative transformation process.

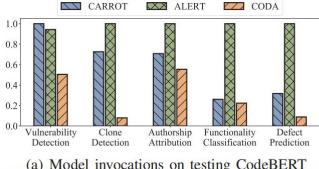
Subjects

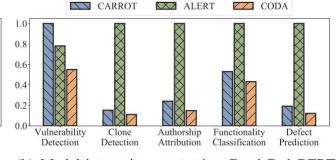
Task	Train/Validate/Test	Class	Language	Model	Acc.
Vulnerability Prediction	21,854/2,732/2,732	2	С	CodeBERT GraphCodeBERT CodeT5	63.76% 63.65% 63.83%
Clone Detection	90,102/4,000/4,000	2	Java	CodeBERT GraphCodeBERT CodeT5	96.97% 97.36% 98.08%
Authorship Attribution	528/–/132	66	Python	CodeBERT GraphCodeBERT CodeT5	90.35% 89.48% 92.30%
Functionality Classification	41,581/–/10,395	104	С	CodeBERT GraphCodeBERT CodeT5	98.18% 98.66% 98.79%
Defect Prediction	27,058/–/6,764	4	C/C++	CodeBERT GraphCodeBERT CodeT5	84.37% 83.98% 81.54%

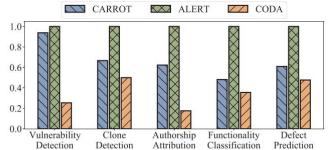
The subjects are diverse, involving different tasks/models/classes/languages.

▶ RQ1: Effectiveness and Efficiency

Rate of Revealed Faults 1


Task		CodeBERT			aphCodeBERT	Γ	CodeT5		
	CARROT	ALERT	CODA	CARROT	ALERT	CODA	CARROT	ALERT	CODA
Vulnerability Prediction	33.72%	53.62%	89.58%	37.40%	76.95%	94.72%	84.32%	82.69%	98.87%
Clone Detection	20.78%	27.79%	44.65%	3.50%	7.96%	27.37%	12.89%	14.29%	42.07%
Authorship Attribution	44.44%	35.78%	79.05%	31.68%	61.47%	92.00%	20.56%	66.41%	97.17%
Functionality Classification	44.15%	10.04%	56.74%	42.76%	11.22%	57.44%	38.26%	35.37%	78.07%
Defect Prediction	71.59%	65.15%	95.18%	79.08%	75.87%	96.58%	38.26%	35.37%	78.07%
Average	42.94%	38.48%	73.04%	38.88%	46.69%	73.62%	33.91%	40.99%	70.96%




CODA outperforms ALERT&CARROT in terms of the rate of revealed faults (RFR).

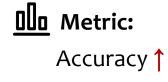
Model Invocations J

(a) Model invocations on testing CodeBERT

(b) Model invocations on testing GraphCodeBERT

(c) Model invocations on testing CodeT5




CODA performs less time and fewer model invocations than ALERT&CARROT.

▶ RQ2: Model Robustness Enhancement

Evaluation Set

Task	Model		Ori		(CARROT			ALERT			CODA		
		CARROT	ALERT	CODA	CARROT	ALERT	CODA	CARROT	ALERT	CODA	CARROT	ALERT	CODA	
Vulnerability Prediction	CodeBERT GraphCodeBERT CodeT5	62.96% 62.99% 63.69%	62.77% 62.88% 63.81%	63.03 % 62.92% 63.92 %	29.14% 12.37% 52.03%	21.11% 19.59% 39.76%	29.69% 21.65% 82.03%	23.43% 16.33% 42.26%	26.27% 17.35% 49.11%	34.44% 23.71% 44.26%	32.16% 25.77% 41.43%	31.73% 24.74% 45.52%	38.82% 34.02% 52.54%	
Clone Detection	CodeBERT GraphCodeBERT CodeT5	97.39% 97.01% 97.73%	96.45% 97.22% 97.14%	97.45% 97.43% 98.10%	83.15% 75.00% 67.77%	42.31% 66.67% 57.63%	94.44% 77.50% 75.85%	52.65% 79.17% 69.94%	72.46% 84.29% 64.36%	75.32% 92.31% 81.63%	38.51% 35.71% 42.15%	71.45% 57.69% 51.74%	89.78% 92.97% 79.88%	
Authorship Attribution	CodeBERT GraphCodeBERT CodeT5	90.55% 89.39% 92.43%	89.39% 88.72% 92.68%	90.91% 90.35% 93.03%	45.06% 81.75% 70.95%	40.67% 67.08% 65.91%	41.03% 72.40% 73.48%	51.25% 79.41% 55.73%	56.25% 78.67% 71.88%	58.82% 100.00% 76.44%	45.67% 45.59% 44.31%	43.33% 80.39% 52.56%	76.47% 84.75% 72.37%	
Functionality Classification	CodeBERT GraphCodeBERT CodeT5	98.11% 98.48% 97.92%	98.52% 98.55% 98.46%	98.56% 98.72% 98.63%	83.46 % 67.53 % 25.31 %	72.80% 75.19% 21.33%	81.51% 77.27% 27.36%	70.83% 32.04% 41.07%	71.75% 52.62% 57.14%	79.41% 62.98% 57.42%	78.92% 91.22% 24.87%	71.18% 90.81% 59.58%	95.43% 93.08% 63.76%	
Defect Prediction	CodeBERT GraphCodeBERT CodeT5	83.50% 83.34% 80.92%	84.16% 84.00% 81.32%	84.44% 84.53% 81.57%	52.73% 68.20% 31.48%	25.81% 48.54% 34.08%	66.03% 74.88% 37.73%	74.88% 52.73% 31.75%	75.87% 63.91% 42.22%	83.12% 59.45% 55.77%	76.86% 67.08% 54.45%	68.66% 68.66% 54.18%	85.36% 76.14% 73.83%	
A	verage	86.43%	86.40%	86.91%	56.40%	46.57%	62.19%	51.56%	58.94%	65.67%	49.65%	58.15%	73.95%	

CODA helps enhance the model robustness more effectively than ALERT&CARROT, in terms of reducing faults revealed by the adversarial examples.

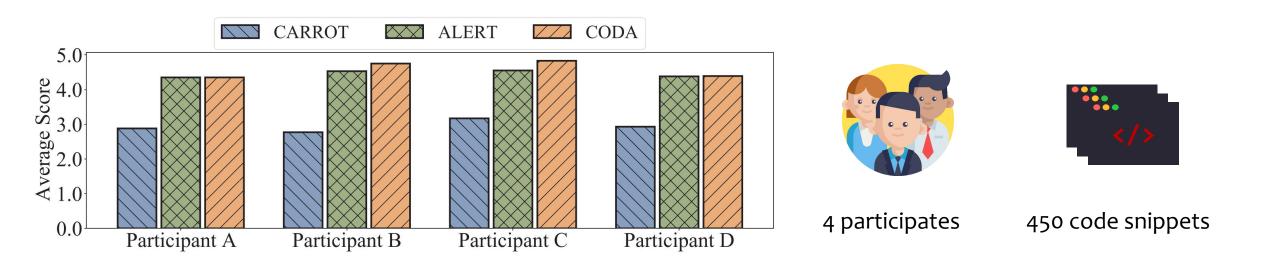
RQ3: Contribution of Main Components

We constructed three variants of CODA:

- w/o RIS (Referrence Inputs Selection)
- w/o EST (Equivalent Structure Transformation)
- w/o CDG (Code Difference Guidance in EST)
- w/o IRT (Identifier Renaming Transformation)

Rate of Revealed Faults 1

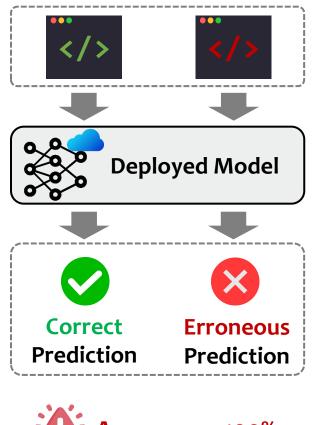
Model	w/o RIS	w/o EST	w/o CDG	w/o IRT	CODA
CodeBERT	30.83%	62.73%	63.08%	35.14%	
GraphCodeBERT	29.49%	62.41%	61.98%	26.24%	73.62%
CodeT5	26.75%	50.74%	57.98%	38.21%	70.96%



All the three components make contributions to the overall effectiveness of CODA.

RQ4: Naturalness of Adversarial Examples

User Study (5-point Likert scale)

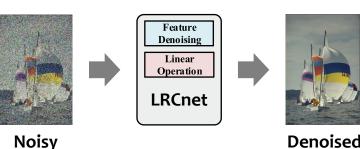

The adversarial examples generated by CODA are natural closely to the naturalness-aware ALERT.

PART 03 深度代码模型部署后性能即时提升

▶ Performance Issues with Deployed Deep Code Models

Accuracy < 100%

- **Existing strategies**
 - Designing more advanced networks for retraining models
 - 2 Incorporating more data for fine-tuning models
- Limitations
 - Time-consuming caused by manual labeling & heavy computations.
 - Largely inexplicable caused by complex parameters and datasets
 - Challenges in enhancing deployed model performance

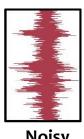

It's crucial to improve the performance of deployed deep code models!

Many Mispredictions are Caused by Noise in Inputs

Denoising in image processing field [1]

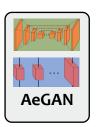
Reason: complex environment, image quatization ...

Formate: continuous pixel values



Denoised Image

Denoising in speech recognition field [2]


Reason: background noise, difference speaker ...

Formate: continuous signal values

Image

Noisy Speech

Denoised Speech

- Advantages of Input Denoising
 - Improving the model performance on-the-fly
 - 2 Retraining-free, efficiency boost
 - Enhancing explainable ability of technique for correcting mispredictions
- Limitations for Denoising Code
 - 1 Denoising in Continuous Space vs. Discrete Inputs
 - **2** Complex syntactic & semantic constraints in Code

- [1] Ren J, Zhang Z, et al. "Robust low-rank convolution network for image denoising." MM 2022.
- [2] Abdulatif S, Armanious K, et al. "Aegan: Time-frequency speech denoising via generative adversarial networks." EUSIPCO 2022.

▶ Input Denoising for Deep Code Models

Ground-truth Label: Bubble Sort Prediction Result: Selection Sort Noisy Identifier: al_selection

Ground-truth Label: Bubble Sort Prediction Result: Bubble Sort Denoised Identifier: count

(1) Noisy Code

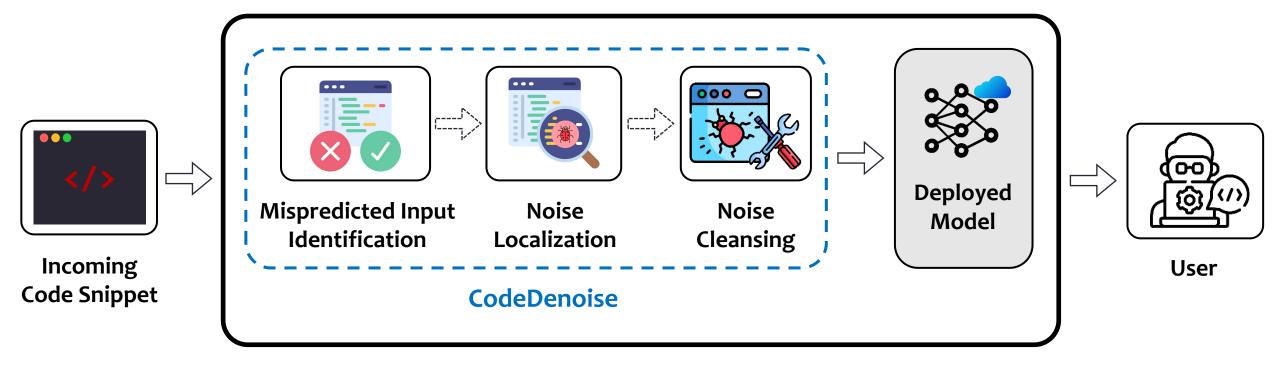
(2) Denoised Code

Noisy identifiers: the identifier makes the largest contribution to the misprediction.

This motivates the potential of on-the-fly improving performance of (deployed) deep code models through identifier-level input denoising.

Challenges

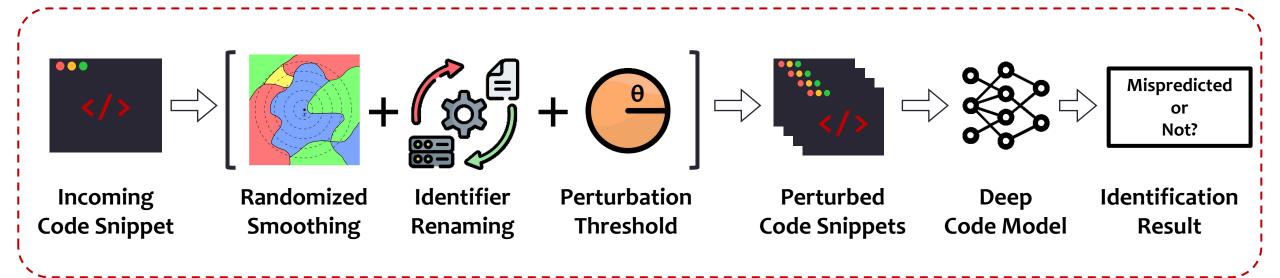
1 How to identify mispredicted inputs from the incomming code snippets?



2 How to **localize noise** (identifier-level) resulting in misprediction from a given code snippet?

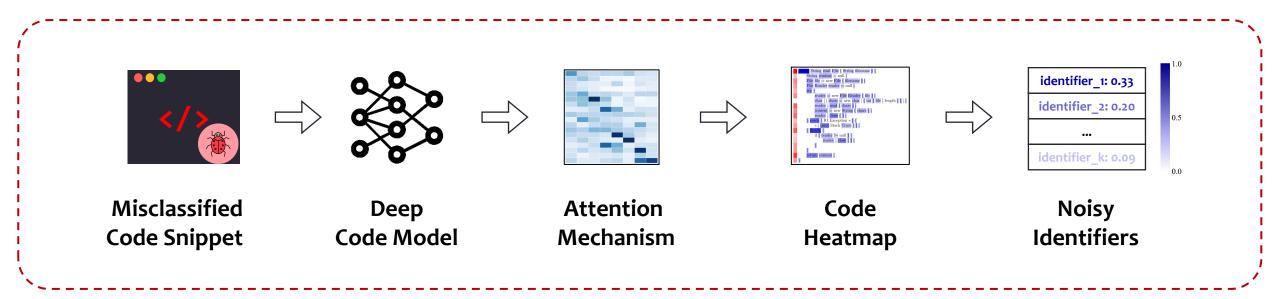
3 How to **cleanse noise** to make the code snippet be predicted correctly?

Overview of CodeDenoise

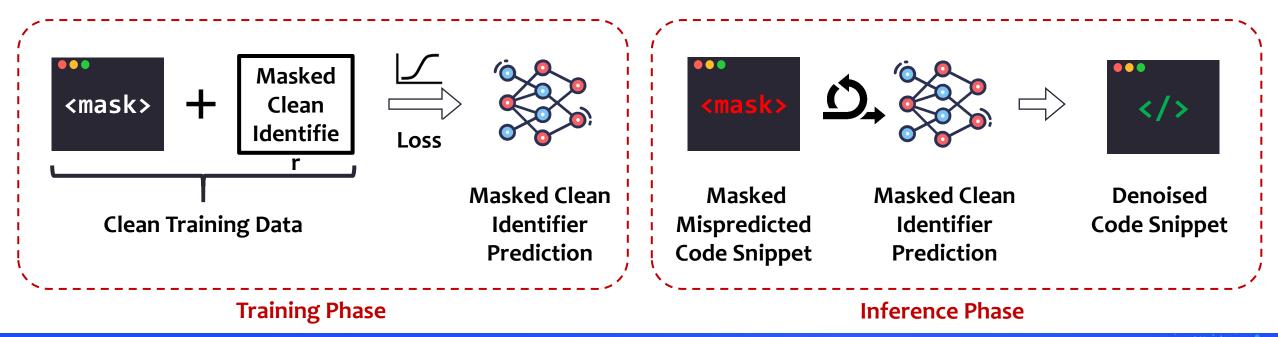

The usage of CodeDenoise in practice:

• We treat CodeDenoise as a post-processing module and intergrate it with the deployed code model as a system for making predictions in practice.

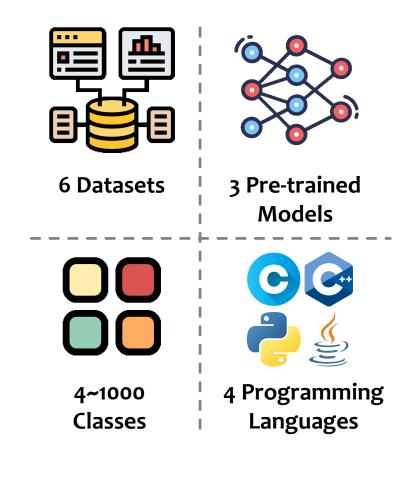
Mispredicted Input Identification


- ► C1 How to identify mispredicted inputs from the incoming code snippets?
 - In the field of CV, *randomized smoothing* is widely used to certify the classification result of a given image by checking the results of randomly perturbed images in the neighborhood.
 - To design adapted randomized smoothing for deep code models, we should:

 (1) define the perturbation strategy (2) and control the perturbation degree on input code.


Noise Localization

- ▶ C2 How to localize noise resulting in misprediction from a given code snippet?
 - The attention mechanism is widely used to analyze the contribution of each element in the code(in particular, it is the core of the state-of-the-art Transformer architecture).
 - Insight: for mispredicted inputs, the identifiers with larger contributions to the misprediction are more likely to be noise in the code snippet.


Noise Cleansing

- C3 How to cleanse noise to make the code snippet be predicted correctly?
 - Exiting masked identifier prediction (MIP) models aim to predict the tokens at the masked locations, but they only consider the naturalness but not cleanliness.
 - To predict a clean identifier to replace the noisy identifier, CodeDenoise builds a masked clean identifier prediction (MCIP) model based on clean training data.

Subjects

Task	Train/Validate/Test	Class	Language	Model	Acc.
Authorship				CodeBERT	83.58%
Attribution	528/–/132	66	Python	GraphCodeBERT	77.27%
				CodeT5	83.33%
Defect				CodeBERT	85.47%
Prediction	27,058/–/6,764	4	C/C++	GraphCodeBERT	83.90%
Frediction				CodeT5	82.29%
Functionality				CodeBERT	97.87%
Classification	41,581/–/10,395	104	C	GraphCodeBERT	98.61%
C104				CodeT5	98.60%
Functionality				CodeBERT	85.00%
Classification	320,000/80,000/100,000	1000	C++	GraphCodeBERT	81.62%
C++1000				CodeT5	86.49%
Functionality				CodeBERT	93.91%
Classification	153,600/38,400/48,000	800	Python	GraphCodeBERT	97.39%
Python8oo				CodeT5	97.62%
Functionality				CodeBERT	96.30%
Classification	48,000/11,909/15,000	250	Java	GraphCodeBERT	97.79%
Java250				CodeT5	97.48%

The subjects are diverse, involving different tasks/models/classes/languages.

▶ RQ1: Effectiveness and Efficiency of CodeDenoise

Olo Metric:

Correction Success Rate ↑
Mis-Correction Rate ↓

Task	Code	BERT	GraphC	odeBERT	CodeT5		
	Fine-tuning	CodeDenoise	Fine-tuning	CodeDenoise	Fine-tuning	CodeDenoise	
Authorship Attribution	20.00%/1.79%	30.00%/0.00%	10.00%/0.00%	20.00 % /0.00 %	10.00%/1.79%	40.00%/0.00%	
Defect Prediction	5.98%/0.59%	22.47%/0.24%	8.51%/1.44%	28.73%/0.18%	5.15%/0.29%	16.64%/0.18%	
Functionality Classification C104	7.32%/0.08%	17.07%/0.02%	5.88%/0.06%	14.12%/0.04%	13.41%/0.06%	15.85%/0.04%	
Functionality Classification C++1000	1.42%/0.17%	27.32%/0.05%	1.95%/0.34%	5.14%/0.05%	1.14%/0.15%	14.13%/0.04%	
Functionality Classification Python800	4.19%/0.09%	28.76%/0.03%	7.18%/0.08%	20.48 % / 0.05 %	3.35%/0.06%	19.55%/0.02%	
Functionality Classification Java250	23.00%/0.07%	31.71%/0.04%	16.67%/0.26%	23.21 %/0.25 %	26.83%/0.03%	27.80%/0.03%	
Average	10.32%/0.46%	26.22%/0.06%	8.37%/0.36%	18.61 %/0.09 %	9.98%/0.39%	22.33%/0.05%	

CodeDenoise outperforms Fine-tuning with larger <u>correction</u> success rate and <u>smaller mis-correction</u> rate.

Overall Accuracy

Task		CodeBERT		GraphCodeBERT			CodeT5		
	Ori	Fine-tuning	CodeDenoise	Ori	Fine-tuning	CodeDenoise	Ori	Fine-tuning	CodeDenoise
Authorship Attribution	84.85%	86.36%	89.39%	84.85%	86.36%	87.88%	84.85%	84.85%	90.91%
Defect Prediction	85.66%	86.01%	88.68%	84.36%	84.48%	88.70%	82.76%	83.41%	85.48%
Functionality Classification C104	97.63%	97.73%	98.02%	98.36%	98.40%	98.56%	98.42%	98.58%	98.63%
Functionality Classification C++1000	84.93%	85.00%	89.00%	81.68%	81.77%	82.59%	86.50%	86.52%	88.37%
Functionality Classification Python800	97.12%	97.15%	97.92%	98.43%	98.46%	98.71%	97.76%	97.78%	98.18%
Functionality Classification Java250	96.17%	96.99%	97.35%	97.76%	97.88%	98.04%	97.27%	97.97%	98.00%
Average	91.06%	91.54%	93.39%	90.91%	91.23%	92.42%	91.26%	91.52%	93.26%

CodeDenoise outperforms Fine-tuning in terms of ovelall accuracy.

RQ2: Contribution of Each Main Component

We constructed four variants of CodeDenoise:

- CodeDenoise _{deepgini}: Randomized-smoothing-based strategy → DeepGini-based strategy
- **CodeDenoise** randR: Attention-based strategy → Random strategy
- CodeDenoise randC: MCIP-based strategy → Random strategy
- **CodeDenoise** MIP: MCIP-based strategy → MIP-based strategy

Metrics	CodeDenoise deepgini	CodeDenoise randL	CodeDenoise randC	CodeDenoise _{MIP}	CodeDenoise
Correction Success Rate ↑	16.91%	14.65%	10.84%	15.50%	21.91%
Mis-correction Rate ↓	0.52%	0.41%	0.52%	0.34%	0.09%
#Identifier Changes \	2.25	3.79	3.27	2.27	1.58

All the three components make contributions to the overall effectiveness of CodeDenoise.

RQ3: Influence of Hyper-parameters

- We studied the influence of two hyper-parameters in CodeDenoise:
 - θ: the threshold to limit the perturbation degree
 - N: the number of perturbed code snippets

θ	1	2	3	4	5
Correction Success Rate	21.91%	22.85%	23.95%	25.27%	26.08%
Mis-correction Rate ↓	0.09%	0.14%	0.16%	0.20%	0.29%
Time (s)↓	0.48	0.63	1.03	1.43	1.70
N	×1	× 2	×3	×4	×5
Correction Success Rate	21.91%	23.30%	24.66%	25.25%	25.99%
Mis-correction Rate ↓	0.09%	0.09%	0.08%	0.08%	0.08%
Time (s) ↓	0.48	0.71	0.87	1.13	1.63

We obtained default settings by balancing effectiveness and efficiency for practical use.

THANKS

