2025 Al+ Development Digital Summit Al+研发数字峰会 拥抱AI 重塑研发

05/23-24 |上海站

2025 Al+ Development Digital Summit Al+研发数字峰会 拥抱Al 重塑研发

多模态大语言模型中的上下文学习

杨旭 | 东南大学

杨旭

东南大学计算机学院副教授/博导

杨旭博士2021年6月从南洋理工大学计算机科学与技术系获工学博士学位, 导师为蔡剑飞,张含望教授。现为东南大学计算机科学与工程学院、软件 学院、人工智能学院副教授。新一代人工智能技术与应用教育部重点实验 室副主任,江苏省双创博士。主要研究方向为多模态视觉语言任务,基于 多模态大语言模型的上下文学习。在过去的3年内,以第一作者身份在人 工智能顶级会议期刊发表论文多篇,包括 TPAMI, CVPR, ICCV, NeurIPS 等。

I. Background

E 录 CONTENTS

II. Diverse Configuration Strategies

III. Shift Vector-based ICL Approximation

IV. Multi-Modal Reasoning Enhancement

PART 01 Background

The Development of GPT

GPT-2' s Capability of Prompt Engineering

- GPT-2 exhibits a distinctive feature known as "prompt engineering".
- This can be compared to the architecture of modern computers, where both data and commands exist in the form of 0s and 1s encoding.

GPT-3' s Capability of Analogy: In-Context Learning **//iDD**

- GPT-3 possesses a unique capability known as "In-context learning".
- It will learn the representation of tasks from the provided in-context examples.

Why In-Context Learning?

"outside-in" methodologies to unravel the inner properties of LLMs

Pros of ICL

- Flexible controllability
- Encapsulate more information

GPT-4: Large Multimodal Model

Why Multimodal Model In-Context Learning?

Expands the application scope of the model: The development of large models various image/video understanding tasks. from single-modal to multi-modal **Visual Question Answering** Image Caption Image Q: What color A table with Text 🥣 Classify: Text bread and is the purse? Table. A: Blue. milk on it. Video

Imitate real humans and achieve multi-modal analogy capabilities

Deepseek-R1: Rule-based Reinforcement Learning

PART 02 Heuristic-based configuration strategies

How to Configure Good In-Context Sequence for Visual Question Answering

Li Li, Jiawei Peng, Huiyi Chen, Chongyang Gao, Xu Yang

arXiv: https://arxiv.org/abs/2312.01571 code: https://github.com/GaryJiajia/OFv2_ICL_VQA

How to Configure Good In-Context Sequence for VQA: Approach **\iDD**

Retrieving In-context examples

How to Configure Good In-Context Sequence for VQA: Approach NDD 6th

Manipulating examples

How to Configure Good In-Context Sequence for VQA

2025AI+-研发数字峰会 | 拥抱AI 重塑研发

How to Configure Good In-Context Sequence for VQA: Analysis **NDD**

Three important inner properties of LVLM during ICL

1. Limited TL capabilities

- As the **number** of **shots increases**, the improvement of the **model diminishes**
- Replacing incorrect answers in demonstrations did **not** significantly **impact** the model's performance.
- Disentangle TR and TL and find that the accuracy of **TR** is significantly **higher than TL**

How to Configure Good In-Context Sequence for VQA: Analysis **NDD**

Three important inner properties of LVLM during ICL

2. The presence of a short-cut effect

SQ		Copy rate(%)	OFv1	OFv2
		RS	43.64	37.34
Q: What is the design on the sheets? A: alligators and bears	Q: What is the design of the bed cover? A: alligators and bears GT: zebra	SI	50.44	54.38
		SQ	77.26	79.84
SQ		SQA	87.74	89.47
		SQA(sole)	47.39	45.82
Q: What is the scientific name of this leaf? A: tulip	Q: What is the scientific name of this leaf? A: tulip	SQA(sole wrong)	37.07	45.71
	GT: camellia			

How to Configure Good In-Context Sequence for VQA: Analysis

Three important inner properties of LVLM during ICL

3. Partial compatibility between vision and language modules

linguistic TR plays a more substantial role than visual TR

Some language reasoning ability lose efficacy in the VL case

2025AI+研发数字峰会 | 拥抱AI 重塑研发

Aidd

PART 03 Shift vector-based in-context learning approximation

Yingzhe Peng, Chenduo Hao, Xinting Hu, Jiawei Peng, Xin Geng, Xu Yang

arXiv: https://arxiv.org/pdf/2406.13185 code: https://github.com/ForJadeForest/LIVE-Learnable-In-Context-Vector

Traditional ICL

Conventional In-Context Learning (ICL)

- Sensitive to ICD selection and requires more inference time
- There is inherent misalignment between different modalities, making multimodal tasks more difficult

Self Attention Break Down

• Consider self-attention (SA) of a specific head :

 $\operatorname{SA}\left(\boldsymbol{q}, \begin{bmatrix} \boldsymbol{K}_{D} \\ \boldsymbol{K} \end{bmatrix}, \begin{bmatrix} \boldsymbol{V}_{D} \\ \boldsymbol{V} \end{bmatrix}\right)$ $\mu(\boldsymbol{q}, \boldsymbol{K}_{D}, \boldsymbol{K}) = \frac{Z_{1}(\boldsymbol{q}, \boldsymbol{K}_{D})}{Z_{1}(\boldsymbol{q}, \boldsymbol{K}_{D}) + Z_{2}(\boldsymbol{q}, \boldsymbol{K})}$ = softmax([$\boldsymbol{q}\boldsymbol{K}_{D}^{\mathsf{T}}, \boldsymbol{q}\boldsymbol{K}^{\mathsf{T}}$]) $\begin{bmatrix} \boldsymbol{V}_{D} \\ \boldsymbol{V} \end{bmatrix}$ $Z_1 = \sum_i \exp(\boldsymbol{q}\boldsymbol{K}_D^{\mathsf{T}})_i$ $= (1 - \mu) \mathrm{SA}(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V}) + \mu \mathrm{SA}(\boldsymbol{q}, \boldsymbol{K}_D, \boldsymbol{V}_D)$ $SA(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V}) + \mu(SA(\boldsymbol{q}, \boldsymbol{K}_D, \boldsymbol{V}_D) - SA(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V}))$ = $Z_2 = \sum_{j=1}^{j} \exp(\boldsymbol{q}\boldsymbol{K}^{\mathsf{T}})_j$ standard attention shift vector **Observation:** K_D/V_D : The key/value of demonstrations **K/V**: The key/value of query input Demonstrations can be seen as shift vectors **q**: A token in query input on zero-shot attention.

Overall Framework

a) Learnable in-context vector.

- Set *L* learnable vectors \boldsymbol{v}_i and corresponding weights α_i .
- b) LIVE intervention.
 - Add $\alpha_i v_i$ to the output of i^{th} decoder layer.
 - In the latent space, transforming a zero-shot query into k-shot incontext learning.
- c) Align with conventional ICL.
 - Train LIVE using a language modeling loss \mathcal{L}_{gt} and a KL loss \mathcal{L}_d for distillation.
 - \mathcal{L}_d minimizes the divergence between the model's output under zero-shot setting and ICL.

Overall Framework

a) Learnable in-context vector.

• Set *L* learnable vectors \boldsymbol{v}_i and corresponding weights α_i . b) LIVE intervention.

- Add $\alpha_i \nu_i$ to the output of i^{th} decoder layer.
- In the latent space, transforming a zero-shot query into k-shot incontext learning.

c) Align with conventional ICL.

- Train LIVE using a language modeling loss \mathcal{L}_{gt} and a KL loss \mathcal{L}_d for distillation.
- \mathcal{L}_d minimizes the divergence between the model's output under zero-shot setting and ICL.

Overall Framework

- a) Learnable in-context vector.
 - Set *L* learnable vectors \boldsymbol{v}_i and corresponding weights α_i .
- b) LIVE intervention.
 - Add $\alpha_i v_i$ to the output of i^{th} decoder layer.
 - In the latent space, transforming a zero-shot query into k-shot incontext learning.
- c) Align with conventional ICL.
 - Train LIVE using a language modeling loss \mathcal{L}_{gt} and a KL loss \mathcal{L}_d for distillation.
 - *L_d* minimizes the divergence between the model's output under zero-shot setting and ICL.

Main Results

We conduct experiments using Idefics-9b model across VQAv2 and OK-VQA.

- LIVE achieve the best performance compared with other methods.
- LIVE maintains almost the same inference speed as zero-shot while achieving 32shot ICL performance.

Results of diverse methods

Yingzhe Peng, Jiale Fu, Chenduo Hao, Xinting Hu, Yingzhe Peng, Xin Geng, Xu Yang

code: https://github.com/Kamichanw/MimIC

More Elegant Approximation

• Consider self-attention (SA) of a specific head :

 $SA\left(\boldsymbol{q}, \begin{bmatrix}\boldsymbol{K}_{D}\\\boldsymbol{K}\end{bmatrix}, \begin{bmatrix}\boldsymbol{V}_{D}\\\boldsymbol{V}\end{bmatrix}\right) \qquad \mu(\boldsymbol{q})$ $= \operatorname{softmax}([\boldsymbol{q}\boldsymbol{K}_{D}^{\mathsf{T}}, \boldsymbol{q}\boldsymbol{K}^{\mathsf{T}}])\begin{bmatrix}\boldsymbol{V}_{D}\\\boldsymbol{V}\end{bmatrix}$ $= (1 - \mu)SA(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V}) + \mu SA(\boldsymbol{q}, \boldsymbol{K}_{D}, \boldsymbol{V}_{D})$ $= \underbrace{SA(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V})}_{\text{standard attention}} + \underbrace{\mu(SA(\boldsymbol{q}, \boldsymbol{K}_{D}, \boldsymbol{V}_{D}) - SA(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V}))}_{\text{shift vector}}$

$$u(\boldsymbol{q}, \boldsymbol{K}_D, \boldsymbol{K}) = \frac{Z_1(\boldsymbol{q}, \boldsymbol{K}_D)}{Z_1(\boldsymbol{q}, \boldsymbol{K}_D) + Z_2(\boldsymbol{q}, \boldsymbol{K})}$$

$$Z_{1} = \sum_{i} \exp(\boldsymbol{q}\boldsymbol{K}_{D}^{\mathsf{T}})_{i}$$
$$Z_{2} = \sum_{j} \exp(\boldsymbol{q}\boldsymbol{K}^{\mathsf{T}})_{j}$$

Additional Observation:
1. Only Z₁ and SA(q, K_D, V_D) are related to demonstrations.
2. Shifts should be multi-head and inserted after

self-attention layers.

 K_D/V_D : The key/value of demonstrations K/V: The key/value of query input q: A token in query input

Mimicking Demonstration Affected Terms

a. Attention difference term

$$SA\left(\boldsymbol{q}, \begin{bmatrix}\boldsymbol{K}_{D}\\\boldsymbol{K}\end{bmatrix}, \begin{bmatrix}\boldsymbol{V}_{D}\\\boldsymbol{V}\end{bmatrix}\right)$$

= SA(\overline{q}, \overline{K}, \overline{V}) + \mu(SA(\overline{q}, \overline{K}_{D}, \overline{V}_{D}) - SA(\overline{q}, \overline{K}, \overline{V}))

b. Normalized attention weights

$$\mu(\boldsymbol{q}, \boldsymbol{K}_{D}, \boldsymbol{K}) = \frac{Z_{1}(\boldsymbol{q}, \boldsymbol{K}_{D})}{Z_{1}(\boldsymbol{q}, \boldsymbol{K}_{D}) + Z_{2}(\boldsymbol{q}, \boldsymbol{K})}$$

$$\boldsymbol{\mathcal{I}}_{1} = \sum_{i} \exp(\boldsymbol{q}\boldsymbol{K}_{D}^{\mathsf{T}})_{i} \qquad \qquad Z_{2} = \sum_{j} \exp(\boldsymbol{q}\boldsymbol{K}^{\mathsf{T}})_{j}$$

2025AI+研发数字峰会 | 拥抱AI 重塑研发

MimIC: Mimic In-Context Learning for Multimodal Tasks

Training Strategy

1. k demonstrations + one query is fed as input to the original LMM, record corresponding hidden states H'.

2. one query is fed as input to MimIC LMM, record corresponding hidden states *H*.

3. Align H with H' by minimizing a composed training loss.

Objective

$$\mathcal{L}_{\text{align}} = \frac{1}{N} \sum_{i} \sum_{j} \left\| h_{i,j} - h'_{i,j} \right\|_{2}^{2}$$
$$\mathcal{L} = \mathcal{L}_{\text{align}} + \lambda \mathcal{L}_{\text{gt}}$$

Main Results

We conduct experiments using Idefics-9b and Idefics2-8b-base models across VQAv2, OK-VQA and COCO caption.

- MimIC achieve **the best performance** compared with other methods.
- MimIC is parameter efficient (0.26M), compared to LoRA (25M/67.7M).

Ablation Results

1. Training with Fewer Samples

- MimIC increases stably on different training set size and different LMMs.
- MimIC can achieve few-shot ICL performance with fewer samples.

2. The number of shots

 MimIC is less sensitive compared to few shot ICL.

32-shot ICI

1-shot ICL

Training Set Size

Aidd

PART 04 Multimodal Reasoning Capability Enhancement

LMM-R1: Empowering 3B LMMs with Strong Reasoning Abilities Through Two-Stage Rule-Based RL

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang, Xingzhong Xu, Xin Geng, Xu Yang

arXiv: https://arxiv.org/abs/2503.07536

Project Page: https://forjadeforest.github.io/LMM-R1-ProjectPage/

LMM-R1: Motivation: Enhance the reasoning capabilities for LMMs NDD 6th

Inspirations of DeepSeek-R1-Zero:

 Rule-Based RL can boost the CoT inference performance, which can generalize to other domains.

Can we extend RL to multimodal models?

1. Data Limitations: **ambiguous answers** & **scarce complex reasoning**

2. **Degraded** foundational reasoning induced by multimodal pretraining

Q: What's the object in image? A1: Cat, A2: Ragdoll, A3: It's a cat.

Q: In the given diagram, if angle 1 has a measure of 35.0 degrees, what is the measure of angle 2? A: 145 degrees.

LMM-R1: Method: Two Stage Training Framework

Stage 1: **Foundational Reasoning Enhancement (FRE)**: Uses **text-only data** to develop strong reasoning foundations. Stage 2:

AIDD

Multimodal Generalization Training (MGT): Extends reasoning capabilities across diverse multimodal domains

LMM-R1: Experiments: Training Datasets

Stage 1:

Foundational Reasoning Enhancement (FRE)

Examples:

Deepscaler40K => FRE-Text

Let P(x) be a polynomial of degree 3n such that. \begin {align*} $P(0) = P(3) = \dots = P(3n) \& = 2, \ P(1) = P(4) = \dots = P(3n+1-2) \& = 1, \ P(2) = P(5) = \dots = P(3n+2-2) \& = 0. \ \dots = P(3n+2-2) \& = 0. \ \dots = P(3n+3). \ Also, \ P(3n+1) = 730$. Determine n.

MultiMath-65K => FRE-Multi

Q: What formes the defense barrierA. palisadeB. wax cuticleC. lower epidermisD. stoma

Stage 2:

Multimodal Generalization Training (MGT)

Examples: VerMulti-Geo-15K => MGT-Geo

Q:如图,点P是直线l外一个定点, 点A为直线l上一个定点,点P关于 直线l的对称点记为P~1~,将直线l 绕点A顺时针旋转30°得到直线l', 此时点P~2~与点P关于直线l'对称, 则∠P~1~AP~2~等于多少度? (A) 30°(B) 45°(C) 60°(D) 75°

VerMulti-65K => MGT-PerceReason Sokoban environments => MGT-Sokoban

Main Results & MGT-PerceReason Results

Table 1. Results (%) across benchmarks categorized by three reasoning intensities: High-Level Reasoning (Text-Only) (MATH500/GPQA), Multimodal Reasoning (OlympiadBench/MathVision/MathVerse), and General Multimodal (MM-Star/MathVista). The "MM Avg" column displays the average performance across all multimodal benchmarks. The **best** result is **bolded** and the <u>second-best</u> is <u>underlined</u>.

Model	Text-Only			MM Reasoning-Dominated				MM General		
	MATH	GPQA	Avg (Olymp.	MathVis.	MathVer.	MM-Star	MathVista	8	
Qwen2.5-VL CoT	63.40	30.30	46.85	10.28	23.59	34.64	51.40	60.70	36.12	
Foundational Reasoning Enhancement Stage										
FRE-Multi FRE-Text	61.80 <u>65.40</u>	27.27 <u>36.87</u>	44.54 <u>51.14</u>	11.80 15.62	24.74 25.76	38.45 38.83	58.76 55.15	64.20 61.40	38.71 39.35	
Multimodal Generalization Training Stage										
MGT-Geo MGT-PerceReason	65.80 63.80	32.32 38.89	49.06 51.35	<u>14.63</u> 15.62	26.84 <u>26.35</u>	41.80 <u>41.55</u>	54.39 <u>58.03</u>	59.00 <u>63.20</u>	39.33 40.95	

Main Results & MGT-PerceReason Results

Table 1. Results (%) across benchmarks categorized by three reasoning intensities: High-Level Reasoning (Text-Only) (MATH500/GPQA), Multimodal Reasoning (OlympiadBench/MathVision/MathVerse), and General Multimodal (MM-Star/MathVista). The "MM Avg" column displays the average performance across all multimodal benchmarks. The **best** result is **bolded** and the <u>second-best</u> is <u>underlined</u>.

Model	Text-Only			MM R	easoning-Do	ominated	MM (MM Avg		
	MATH	GPQA	Avg	Olymp.	MathVis.	MathVer.	MM-Star	MathVista		
Qwen2.5-VL CoT	63.40	30.30	46.85	10.28	23.59	34.64	51.40	60.70	36.12	
Foundational Reasoning Enhancement Stage										
FRE-Multi	61.80	27.27	44.54	11.80	24.74	38.45	58.76	64.20	38.71	
FRE-Text	65.40	36.87	<u>51.14</u>	15.62	25.76	38.83	55.15	61.40	<u>39.35</u>	
Multimodal Generalization Training Stage										
MGT-Geo	65.80	32.32	49.06	14.63	26.84	41.80	54.39	59.00	39.33	
MGT-PerceReason	63.80	38.89	51.35	15.62	<u>26.35</u>	<u>41.55</u>	<u>58.03</u>	<u>63.20</u>	40.95	

Main Results & MGT-PerceReason Results

Table 1. Results (%) across benchmarks categorized by three reasoning intensities: High-Level Reasoning (Text-Only) (MATH500/GPQA), Multimodal Reasoning (OlympiadBench/MathVision/MathVerse), and General Multimodal (MM-Star/MathVista). The "MM Avg" column displays the average performance across all multimodal benchmarks. The **best** result is **bolded** and the <u>second-best</u> is <u>underlined</u>.

Model	Text-Only			MM R	easoning-Do	ominated	MM (MM Avg	
	MATH	GPQA	Avg	Olymp.	MathVis.	MathVer.	MM-Star	MathVista	
Qwen2.5-VL CoT	63.40	30.30	46.85	10.28	23.59	34.64	51.40	60.70	36.12
	Foundational Reasoning Enhancement Stage								
FRE-Multi	61.80	27.27	44.54	11.80	24.74	38.45	58.76	64.20	38.71
FRE-Text	65.40	36.87	<u>51.14</u>	15.62	25.76	38.83	55.15	61.40	<u>39.35</u>
Multimodal Generalization Training Stage									
MGT-Geo	65.80	32.32	49.06	14.63	26.84	41.80	54.39	59.00	39.33
MGT-PerceReason	63.80	38.89	51.35	15.62	<u>26.35</u>	<u>41.55</u>	<u>58.03</u>	<u>63.20</u>	40.95

LMM-R1: Experiments: Main Results

MGT Results: MGT-Geo

Table 2. Results (%) on geometry-related benchmarks. For MathVision, results are reported for Analytic/Combinatorial/Metric/Solid Geometry. For MathVerse, results are categorized by modality emphasis: TD (Text Domain)/TL (Text Lite)/VI (Vision Intensive)/VD (Vision Domain)/VO (Vision Only). The **best** performance in each subfield is **bolded**.

Model		MathVerse									
	Analy.	Combin.	Metric	Solid	AVG	TD.	TL.	VI.	VD.	VO.	Avg
Qwen2.5-VL CoT	34.52	20.78	26.33	20.49	25.53	43.15	35.41	33.38	32.87	28.43	34.64
Direct-RL-Geo	30.95	17.53	26.59	22.54	24.40	47.59	40.36	38.96	36.04	27.03	38.00
FRE-Text	28.57	22.08	31.01	24.10	26.44	48.22	42.26	39.72	38.96	25.00	38.83
MGT-Geo	36.90	22.73	31.66	27.87	29.79	51.02	42.51	39.72	39.09	36.68	41.80

📊 3.35% improvement on MathVision geometry tasks across Analytic, Combinatorial, Metric and Solid geometry

- 2.97% improvement on MathVerse geometry problems from Text Domain to Vision Only categories
- ✤ 11.68% gain in vision-only geometric reasoning compared to FRE-Text baseline
- Significant improvements in both perception and reasoning capabilities for geometry-specific tasks

LMM-R1: Discussion: SFT vs RFT

参与调研您将优先获得

AiDD会后小调研

AiDD峰会致力于协助企业利用AI技 术深化计算机对现实世界的理解,推 动研发进入智能化和数字化的新时 代。作为峰会的重要共建者,您的真 知灼见对我们至关重要。衷心感谢您 的参与支持!

科技生态圈峰会+深度研习 ——1000+技术团队的共同选择

感谢聆听!

扫码领取会议PPT资料